Re:	Site Development – SP #
Subject:	Preliminary Parking Management and Garage Plan Sample Queuing Analysis
Date:	

INTRODUCTION

This memorandum presents the results of a queuing analysis for the inbound traffic at the garage access of the approved academic/office building as part of Site Plan #.

The purpose of this assessment is to respond to a request

from Arlington County for an evaluation of the queuing from inbound traffic at the proposed academic/office building garage entrance, to ensure that queues will remain within the subject property without extending on to the public roadway network.

ANALYSIS

The following assumptions and calculations were made to perform the queuing analysis:

- 1. The number of inbound lanes at the academic/office building garage entrance was two (2) during the AM peak hour, and one (1) during the PM peak hour.
- 2. Office employees and students were assumed to use a proximity card for entry into the garage; "transient"/retail users and visitors were assumed to use a pay-on-foot system for entry into the garage.
- 3. Peak hour forecasts for the academic/office building garage entrance were

obtained from the traffic impact analysis.

For purposes of this analysis, "monthly" users were considered to include office and academic uses, and "transient" users were considered to include retail uses.

AM Peak Hour Inbound Monthly Users Volume (Vm)	= 257 vehicles/hour
PM Peak Hour Inbound Monthly Users Volume (Vm)	= 111 vehicles/hour
AM Peak Hour Inbound Transient Users Volume (Vt)	= 3 vehicles/hour
PM Peak Hour Inbound Transient Users Volume (Vt)	= 4 vehicles/hour

Total AM Peak Hour Inbound Monthly Users Volume $(V_m) = 260$ vehicles/hour Total PM Peak Hour Inbound Monthly Users Volume $(V_m) = 115$ vehicles/hour

Lane processing rates for each of the uses were derived from PARC service rates established in the Parking Structures, Third Edition manual. A blended processing rate was then derived.

Monthly Users (Office and Academic) Processing Rate (μ_m) = 600 vphpl (or 6 sec/vehicle) Transient Users (Retail) Processing Rate (μ_t) = 400 vphpl (or 9 sec/vehicle)

Vm V_t μ = V_m/μ_m V_t/μ_t 257 vph +3 vph = μαμ 257 vph/(600 vph) + (3 vph)/(400 vph)= 597 vph (or 6.03 sec/vehicle) 111 vph 4 vph ____ μрм 111 vph/(600 vph) + (4 vph)/(400 vph)

= 590 vph (or 6.10 sec/vehicle)

For a more conservative analysis, a turn factor was added into the lane processing rates to account for the time required for vehicles to turn into the gate area. A turn factor of approximately 1 seconds/vehicle was applied.

The total service rate (μ) for the gate is as follows:

Total Service Rate (μAM)	= 2 lanes * 3600/(6.03 sec/vehicle + 1 sec/vehicle) = 1,024 vehicles/hour
Total Service Rate (μΡΜ)	= 1 lane * 3600/(6.10 sec/vehicle + 1 sec/vehicle) = 507 vehicles/hour

The traffic intensity (λ) is generally $\lambda = V/\mu$

Thus, the traffic intensity for each gate is as follows:

AM Peak Hour Traffic Intensity (λam)	= 260/1,024 = 0.254
PM Peak Hour Traffic Intensity (λ _{pm})	= 115/507 = 0.227

Attachment I shows the Parking Structures, Third Edition design queue curve as a function of traffic intensity. It is inferred from the graph that the 90% probability queue for the entrance, as a two-lane gate, would be zero (0) vehicles in the reservoir during the AM peak hour and zero (0) vehicles in the reservoir during the PM peak hour.

CONCLUSION

As shown in the analysis elaborated above, allowing for two inbound lanes during the AM peak hour and one inbound lane during the PM peak hour would minimize queuing at the academic/office building entrance.

Figure 4-12. Design queue curves

: Entrance AM Traffic Intensity of 0.254 along "2 Lanes" curve 90% Probability Queue (Reservoir Behind Service Position) =0 Vehicles

: Entrance PM Traffic Intensity of 0.227 along "2 Lanes" curve 90% Probability Queue (Reservoir Behind Service Position) =0 Vehicles

Site Plan Development - SP #

Site Trip Generation Summary (1)

		ITE Land	Outstate		V			Č			ł
Development		0.00	Qualitity	0110	<u> </u>	out	Total	۲ ۲	ivi reak nour Out	Total	Total
Existing Uses Academic (2)(3)		1	70,000	Square Feet	126	19	145	63	50	113	1130
Proposed Uses Building One Residential	Non-Auto Mode Share Reduction Residential Subtotal	220	272 50%	Dwelling Units	27 <u>14</u> 13	110 <u>55</u> 55	137 69 68	109 <u>55</u> 54	58 2 <u>9</u> 29	167 <u>84</u> 83	1772 <u>886</u> 886
<u>Building Two</u> Office	Non-Auto Mode Share Reduction Office Subtotal	710	55,000 35%	Square Feet	105 <u>37</u> 68	4 را 9 ارم	119 42 77	24 <u>8</u> 16	116 <u>41</u> 75	140 <u>49</u> 91	833 292 541
Retail (4)	Non-Auto Mode Share Reduction Retail Subtotal	826	5,000 <i>80%</i>	Square Feet	16 3	18 4	34 7	15 4	18 <u>15</u> 3	33 7	222 <u>178</u> 44
Academic (3)(5)		I	105,000	Square Feet	189	29	218	95	75	170	1700
Total Proposed Mot-Now Trine					273	97	370	105	182	351	3171
Notes:					747	0/	1 (77	001	761	0007	T +07

(1) Trip generation calculations based on Institute of Transportation Engineers (ITE) Trip Generation, Ninth Edition.

(2) Existing trip generation for academic uses based on existing driveway counts for the peak hour of the adjacent street at the intersection of N. Fairfax Drive and N. Glebe Road.

(3) Average daily trips generated for academic uses estimated as ten (10) times the observed PM peak hour traffic.

(4) For the AM peak hour, a peak hour of the generator rate was used due to the lack of ITE data for peak hour of the adjacent street.

(5) Trip generation of proposed academic uses estimated based on the square footage ratio of the existing trip generation (see note 2.) The ratio of 105,000 S.F. to 70,000 S.F. is 1.5.

Therefore, this ratio of 1.5 was multiplied with the existing trip generation to derive the proposed trip generation.