

# Little Pimmit Run Watershed Retrofits

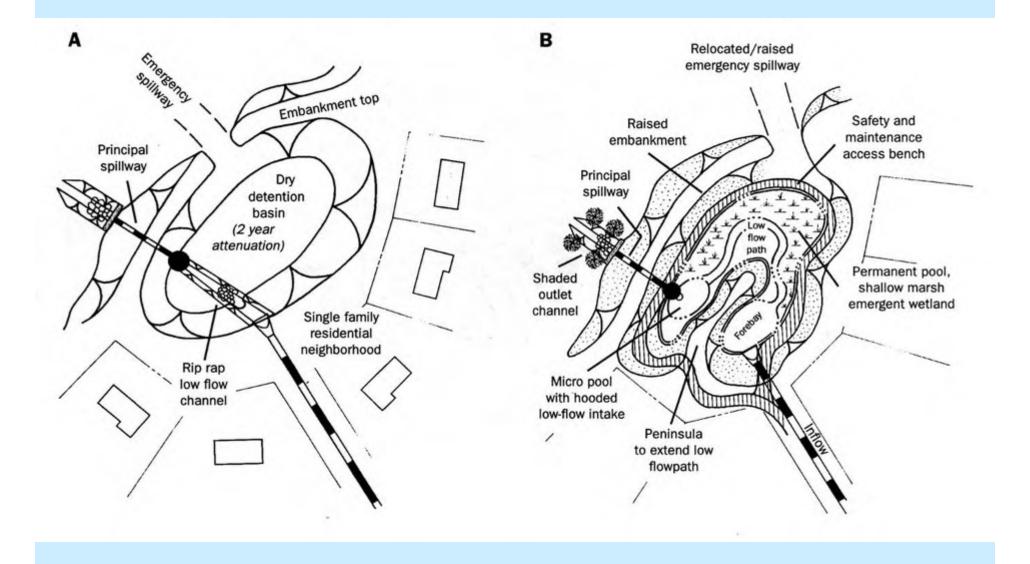
## Greg Hoffmann Center for Watershed Protection



June 4, 2009 Arlington County, Virginia

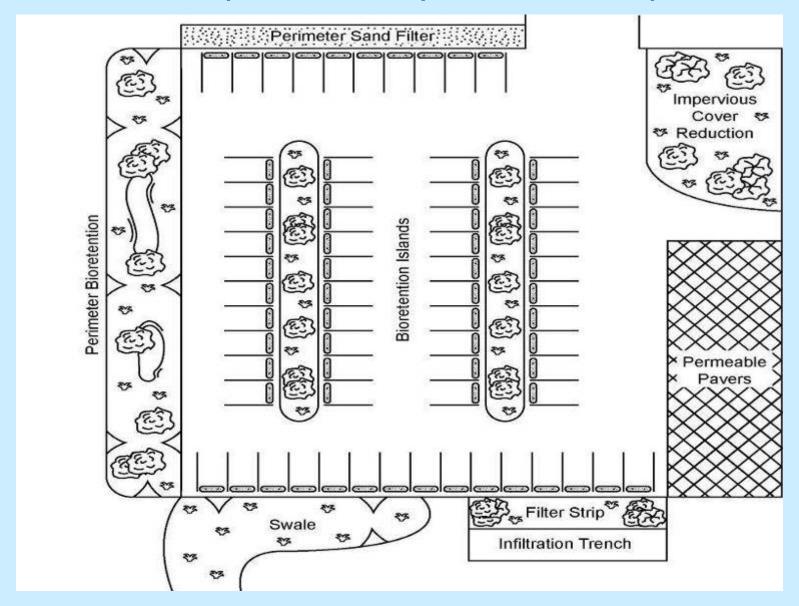
## The 6 W's

- What are stormwater retrofits?
- Why retrofit?
- What is the retrofitting philosophy?
- What did we do?
- What are the results?
- Where to from here?


#### What Are Stormwater Retrofits?



Rolling Stone Retrofit Montgomery Co., MD


Stormwater
 retrofits are
 stormwater
 management
 practices in locations
 where stormwater
 controls did not
 previously exist or
 were ineffective

#### **Extended Detention, Wet Ponds, and Wetlands**





#### Bioretention, Filtration, Infiltration, & Swales







## **Other**





## Why Retrofit?

- Many of our subwatersheds were developed without effective stormwater management practices
- This has caused a number of negative impacts on our receiving waters
- Stormwater retrofitting is an important tool, in combination with stream restoration, traditional flood protection, and other measures, to help address these situations and help meet specific subwatershed restoration objectives...





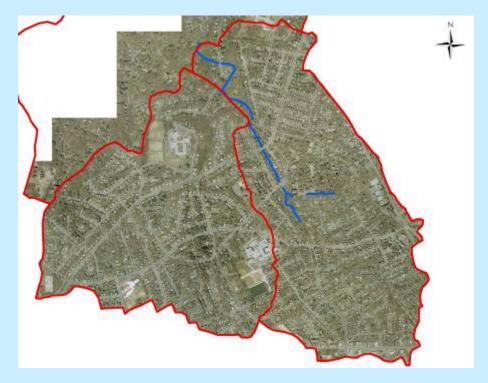
## Retrofitting is Challenging

- 50+ years of development and drainage infrastructure is not easily re-done
- The more impervious a watershed becomes, the more storage is required to meet restoration objectives and the more difficult it becomes to find retrofit sites
- It is difficult to find enough retrofit locations and storage volume to achieve large reductions in pollutant loads and stormwater volumes
- It is generally prohibitive to find enough retrofit locations and storage volume to meet flood protection and stream erosion restoration objectives

## What Is the Retrofitting Philosophy?

Retrofitting urban watersheds is...

- The art of opportunity
- Cumulative and long-term in its benefits


Retrofitting urban watersheds is not about drastic changes to the surface and subsurface landscape.

This philosophy guided our retrofitting assessment.

#### What Did We Do?

## **Desktop Analysis**

- Purpose
  - Rapidly search for and identify potential retrofit sites across the subwatershed
  - Save time in the field
- Result
  - 64 potential locations identified.



## Retrofit Reconnaissance Inventory (RRI)



### Williamsburg Median (at Powhatan)



## Williamsburg Blvd.





George Mason Dr.

### **Jamestown Elementary School**



**Marymount College** 



### **George Mason Median**



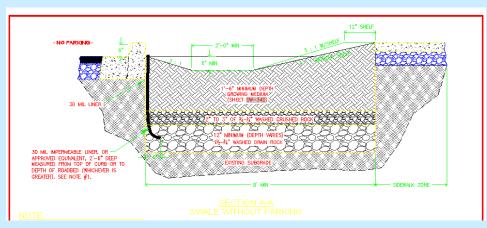
## **Knights of Columbus**



| 100-Point Scoring System For Little Pimmit Run Retrofits |          |         |          | Site: LPW61A & LWP61B |
|----------------------------------------------------------|----------|---------|----------|-----------------------|
| 100 1 omit goormig cyclem i ci                           |          | Score   | Weighted | Old: El Work & EW Old |
| Screening Factor                                         | Weight   | (0-10)  | Score    | Notes                 |
| PRIMARY SCREENING FACTORS                                | <b>g</b> | (5 1 5) |          |                       |
| % of Water Quality Volume Treated (0%                    |          |         |          |                       |
| = 0 pts; 100% = 10 pts)                                  | 1.5      | 17.39   | 26.085   |                       |
| Size of Contributing Drainage Area (0                    |          |         |          |                       |
| acres = 0 pts; 5 acres = 10 pts)                         | 1.5      | 5.38    | 8.07     | 2.69 acres            |
| Cost/cubic foot treated (>\$40 = 0 pts;                  |          |         |          |                       |
| \$20-\$40 = 5 pts; <\$20 = 10 pts)                       | 1.5      | 10      | 15       | \$10.50/cubic foot    |
| % Impervious Cover in Drainage Area                      |          |         |          |                       |
| (0% = 0  pts; 100% = 10  pts)                            | 1        | 1.64    | 1.64     |                       |
| Public Land (Private = 0 pts; School = 4                 |          |         |          |                       |
| pts; Street ROW = 7 pts; Park or gov't                   |          |         |          |                       |
| land = 10 pts)                                           | 1        | 4       | 4        |                       |
| Potential for Quick Implementation or                    |          |         |          |                       |
| Coincides with Planned Construction                      |          |         |          |                       |
| (No = 0 pts; Yes = 10 pts)                               | 1        | 0       | 0        | School property       |
| County Maintenance Burden (High = 0                      |          |         |          |                       |
| pts; Med = 5 pts Low = 10 pts)                           | 1        | 10      | 10       | School to maintain    |
| SECONDARY SCREENING FACTORS                              |          |         |          |                       |
| Potential Utility or Site Constraints (Yes =             |          |         |          |                       |
| 0 pts; No = 10 pts)                                      | 0.5      | 10      | 5        |                       |
| Existing Drainage Problem (No = 0 pts;                   |          |         |          |                       |
| Yes = 10 pts)                                            | 0.5      | 0       | 0        |                       |
| Educational Opportunity (Opportunity for                 |          |         |          |                       |
| signage = 5 pts; Parks = 8 pts; Schools =                |          |         |          |                       |
| 10 pts)                                                  | 0.5      | 10      | 5        |                       |
|                                                          |          |         |          |                       |
| TOTAL                                                    |          |         | 74.795   |                       |

## What Are the Results?

- 40 potential retrofit sites receive runoff from 9% of west branch and 5% of east branch
- Stormwater volume target for each retrofit is 1" of runoff from impervious surfaces
- 55% of the 40 sites meet this target


## Where To From Here?

Calculate pollutant and volume reduction

results

Concept designs

- standard details
- specific sites
- Implementation
  - High priority sites already being evaluated for nearterm implementation
  - Further evaluation of other potential sites
  - Other opportunities may emerge based upon ideas in this study



## **Questions?**